69 research outputs found

    Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work

    Full text link
    Deep networks thrive when trained on large scale data collections. This has given ImageNet a central role in the development of deep architectures for visual object classification. However, ImageNet was created during a specific period in time, and as such it is prone to aging, as well as dataset bias issues. Moving beyond fixed training datasets will lead to more robust visual systems, especially when deployed on robots in new environments which must train on the objects they encounter there. To make this possible, it is important to break free from the need for manual annotators. Recent work has begun to investigate how to use the massive amount of images available on the Web in place of manual image annotations. We contribute to this research thread with two findings: (1) a study correlating a given level of noisily labels to the expected drop in accuracy, for two deep architectures, on two different types of noise, that clearly identifies GoogLeNet as a suitable architecture for learning from Web data; (2) a recipe for the creation of Web datasets with minimal noise and maximum visual variability, based on a visual and natural language processing concept expansion strategy. By combining these two results, we obtain a method for learning powerful deep object models automatically from the Web. We confirm the effectiveness of our approach through object categorization experiments using our Web-derived version of ImageNet on a popular robot vision benchmark database, and on a lifelong object discovery task on a mobile robot.Comment: 8 pages, 7 figures, 3 table

    Tunable Convolutions with Parametric Multi-Loss Optimization

    Get PDF

    Tunable Convolutions with Parametric Multi-Loss Optimization

    Get PDF

    The Implicit Function as Squashing Time Model: A Novel Parallel Nonlinear EEG Analysis Technique Distinguishing Mild Cognitive Impairment and Alzheimer's Disease Subjects with High Degree of Accuracy

    Get PDF
    Objective. This paper presents the results obtained using a protocol based on special types of artificial neural networks (ANNs) assembled in a novel methodology able to compress the temporal sequence of electroencephalographic (EEG) data into spatial invariants for the automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. With reference to the procedure reported in our previous study (2007), this protocol includes a new type of artificial organism, named TWIST. The working hypothesis was that compared to the results presented by the workgroup (2007); the new artificial organism TWIST could produce a better classification between AD and MCI. Material and methods. Resting eyes-closed EEG data were recorded in 180 AD patients and in 115 MCI subjects. The data inputs for the classification, instead of being the EEG data, were the weights of the connections within a nonlinear autoassociative ANN trained to generate the recorded data. The most relevant features were selected and coincidently the datasets were split in the two halves for the final binary classification (training and testing) performed by a supervised ANN. Results. The best results distinguishing between AD and MCI were equal to 94.10% and they are considerable better than the ones reported in our previous study (∌92%) (2007). Conclusion. The results confirm the working hypothesis that a correct automatic classification of MCI and AD subjects can be obtained by extracting spatial information content of the resting EEG voltage by ANNs and represent the basis for research aimed at integrating spatial and temporal information content of the EEG

    Toward domotic appliances control through a self-paced P300-based BCI

    Get PDF
    During recent years there has been a growing interest in Brain Computer Interface (BCI) systems as an alternative means of interaction with the external world for people with severe motor disabilities. The use of the P300 event-related potentials as control feature allows users to choose between various options (letters or icons) requiring a very short calibration phase. The aim of this work is to improve performances and flexibility of P300 based BCIs. An efficient BCI system should be able to understand user's intentions from the ongoing EEG, abstaining from doing a selection when the user is engaged in a different activity, and changing its speed of selection depending on current user's attention level. Our self-paced system addresses all these issues representing an important step beyond the classical synchronous P300 BCI that forces the user in a continuous control task. Experimentation has been performed on 10 healthy volunteers acting on a BCI-controlled domestic environment in order to demonstrate the potential usability of BCI systems in everyday life. Results show that the self-paced BCI increases information transfer rate with respect to the synchronous one, being very robust, at the same time, in avoiding false negatives when the user is not engaged in a control task

    Brain–Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems

    Get PDF
    International audienceIncreasing the level of automation in air traffic management is seen as a measure to increase the performance of the service to satisfy the predicted future demand. This is expected to result in new roles for the human operator: he will mainly monitor highly automated systems and seldom intervene. Therefore, air traffic controllers (ATCos) would often work in a supervisory or control mode rather than in a direct operating mode. However, it has been demonstrated how human operators in such a role are affected by human performance issues, known as Out-Of-The-Loop (OOTL) phenomenon, consisting in lack of attention, loss of situational awareness and de-skilling. A countermeasure to this phenomenon has been identified in the adaptive automation (AA), i.e., a system able to allocate the operative tasks to the machine or to the operator depending on their needs. In this context, psychophysiological measures have been highlighted as powerful tool to provide a reliable, unobtrusive and real-time assessment of the ATCo’s mental state to be used as control logic for AA-based systems. In this paper, it is presented the so-called “Vigilance and Attention Controller”, a system based on electroencephalography (EEG) and eye-tracking (ET) techniques, aimed to assess in real time the vigilance level of an ATCo dealing with a highly automated human–machine interface and to use this measure to adapt the level of automation of the interface itself. The system has been tested on 14 professional ATCos performing two highly realistic scenarios, one with the system disabled and one with the system enabled. The results confirmed that (i) long high automated tasks induce vigilance decreasing and OOTL-related phenomena; (ii) EEG measures are sensitive to these kinds of mental impairments; and (iii) AA was able to counteract this negative effect by keeping the ATCo more involved within the operative task. The results were confirmed by EEG and ET measures as well as by performance and subjective ones, providing a clear example of potential applications and related benefits of AA

    Functional cortical source connectivity of resting state electroencephalographic alpha rhythms shows similar abnormalities in patients with mild cognitive impairment due to Alzheimer's and Parkinson's diseases

    Get PDF
    Objective: This study tested the hypothesis that markers of functional cortical source connectivity of resting state eyes-closed electroencephalographic (rsEEG) rhythms may be abnormal in subjects with mild cognitive impairment due to Alzheimer's (ADMCI) and Parkinson's (PDMCI) diseases compared to healthy elderly subjects (Nold). Methods: rsEEG data had been collected in ADMCI, PDMCI, and Nold subjects (N = 75 for any group). eLORETA freeware estimated functional lagged linear connectivity (LLC) from rsEEG cortical sources. Area under receiver operating characteristic (AUROC) curve indexed the accuracy in the classification of Nold and MCI individuals. Results: Posterior interhemispheric and widespread intrahemispheric alpha LLC solutions were abnormally lower in both MCI groups compared to the Nold group. At the individual level, AUROC curves of LLC solutions in posterior alpha sources exhibited moderate accuracies (0.70-0.72) in the discrimination of Nold vs. ADMCI-PDMCI individuals. No differences in the LLC solutions were found between the two MCI groups. Conclusions: These findings unveil similar abnormalities in functional cortical connectivity estimated in widespread alpha sources in ADMCI and PDMCI. This was true at both group and individual levels. Significance: The similar abnormality of alpha source connectivity in ADMCI and PDMCI subjects might reflect common cholinergic impairment. (C) 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved

    Measures of Resting State EEG Rhythms for Clinical Trials in Alzheimer’s Disease:Recommendations of an Expert Panel

    Get PDF
    The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12Hz) and widespread delta (<4Hz) and theta (4-8Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes
    • 

    corecore